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Abstract

Finite element modeling has proven useful for accurately simulating scattered or radiated

fields from complex three-dimensional objects whose geometry varies on the scale of a fraction

of a wavclcng(h. In order to practically compute a solution to exterior prob]cms, the domain

must bc truncated at some finite surfiacc  where the So]nmcrfcld radiation condition is cnforccd,

either approximately or exactly. This paper outlines a method that couples three-dimensional

finite clcmcnt solutions interior to a bounding surface, with an efficient integral equation solution

that exactly cnforccs the Sommcrfcld radiation condition. The general formulation and the main

features of the discrctizcd problcm arc first briefly ou(lined.  Results for far and near fields arc

presented for gcomctrics where an analytic solution exists and compared with exact solutions to

establish (he accuracy of the model. Results are also presented for objects that do not allow an

analy[ic  solution, and arc compared with other calculations and/or measurements.

.—
I“hc reseat-ch dcscribcd  in this paper was cal r icd out at (he Jet l’repulsion I,atml-a(ory,  California institute of
I’cchnology, under a contract with the National Aeronautics and S])acc Administration.



INTROI)UCT1ON

Uinitc element modeling has proven useful for accurately simulating scattered or radiated

fields from complex three-dimensional objects whose ~,eomctry varies on the scale of a fraction

of a wavelength. The solution of interior problems-simulating fields in waveguidcs  and

cavities–has been successfully accomplished using finite clement methods because a bounding

surface, such as the cavity walls, exactly truncates the lmoblcm domain. l-he solution of exterior

pmblcms-simulating  fields sca((crcd or radiated from structures--is more difficult bccausc of the

need to nunlcricall y truncate the finite Clcnlcnt mesh. To practical y compute a solution to

exterior problems, the domain must bc truncated at some finite surfi~cc where the Sommerfcld

radiation condition is enforced, either approximately or exactly. Approximate methods attempt

to truncate the mesh using only local field infol mation :it each grid point, whereas exact methods

arc global, needing information from the entire mesh boundary. This paper outlines a method

that coLIples  three-dimensional finite clcmcnt (I;l;) solutions interior to the bounding surface with

an cfficicnt  integral equation (l Ii) solution that Cxa(:tly cnforccs  the Sonlmcrfcld  radiation

condition.

lhc problem domain is divided into interior and exterior regions, separated at the mesh

boundary. q’hc unknown sources in the integral equalion are directly related to the tangential

fields on the mesh boundary, and the radiation condition is ilnplicitly  cnforccd exactly through

the L]SC of the free-space Green’s function. Fields in the two regions arc coupled by enforcing

boundary conditions on tangential field components at the mesh boundary, thereby producing a

unique  and exact solution to Maxwell’s equations in bo[h regions.

l%c choice of the artificial boundary separatitig  the interior and exterior region has a

direct bearing on the solution (echniquc  for the exterior region. The selection of a general

arbitrary surface allows the mesh to conform to the body and results in the smallest finite

clcmcnt  meshing region and hence (he smallest F13 m:itrix [ 1 -4,7]. ‘1’hc solution of the integral

equation in the exterior region, however, involves the application of a general moment method

solution  which results in the computer storage and solution lime being at least proportional to
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that of a three-ctimensional surface integral ccluation formulation, defeating the computational

efficiency of tllc finite clcmcnt method and li]niting  its usefu]ncss, In the unimomcnt rncthod

introduced by Mci [5], the boundary is the surface of a separable coordinate system (for example

the surface of a sphere). In the method introduced by Hoysc and Scidl [6] a surface of revolution

is proposed which results in cigcnfunction  series expansion in only O[)C direction (azimuthal).

A complementary issue is the selection of the expansion functiol)s  in the finite clcmcnt

and inlcgral equation rcprcscntations. To cnforcc continuity of fields across the mesh boundary,

the expansion functions used in the integral equation c:tn  bc identical or similar to those used at

the boundary of (hc finite clcmcnt mesh. As mentioned above, this approach leads to the use of a

g,cncral  moment method solution, and in addition to lilniting  computational cfficicncy, scvcrcly

limits the choice and the number of elements of the c.xpansion  in the two regions. A second

approach dccouplcs  the interior finite element mesh froln that used for the expansion functions in

the integral equation formulation and thus provicles flexibility in the choice and number of

functions most appropriate to field expansion in each region.

The formulation in [6] crnploying  a surface of revolution boundary, suggested a nodc-

bascd tetrahedral expansion in the finite clcmcnt region, and a l;ouricr  modal azimuthal

expansion together with Hcrmitc polynomial functions along the surface of revolution generator

for the integral equation expansion< A similar twc)-ditllcllsi(~llal  formulation for arbitrary

scat[crcrs was given in [7]. The genera] three-dimensional formulation in this paper builds upon

the previous works [6,7], following [6] in the use of a surface of rcvc)lution to truncate the finite

clcmcnt  mesh. The work in this paper utiliz,cs  vector c.dgc clcmcnts to discrctize the Hclmholtz

wave equation, and picccwisc  triangle functions along the generator to efficiently model the

mesh truncation surface. The vcc(or edge clcmcnts naturally cnforcc (1]c boundary condition at

pcrfcct]y  conducting surfaces and do not allow the generation of parasitic fields cncountcrcd

when applying nodal clcmcnts.  l’hcy also produce fewer non-zero m}trics in the resultant sparse

systcm of equations relative to nodal elements. Tilis approach has broad applicability in
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nmdcling  both the near and far fields as shown by the extensive set of calculations presented in

this paper. A complctc,  and detailed description of this formulation is given in [8].

The formulation has also been extended to radiation problems (e.g., antenna clcmcnts  or

arrays) by correctly modeling impressed sources within the finite clcmcnt mesh. The radiation

modeling is reported in [9].

‘1’l]]~OR~~~’ICAI.  IWIR1’vlUI.ATION

The scattcrcr  and surrounding space arc broken into two regions: an interior part

containing the scatterers and frccspacc  rcg.ion out to a defined surface, and the exterior

homogcnous  part (I:igurc 1).

The I?inite  IHcmcnt Representation

In the in(crior region, a finite clcmcnt discrc(ization  of a weak form of the wave cqua[ion  is

used to model the g,comctry and fields, leading to

(1)

~~is the magnetic field (the }~-equation is used in t}lis paper; a dual fi-equation can also bc

wr-ittcn),  W is a testing function, the asterisk denotes conjugation, and ~ x; is the tangential

component of Eon the surface of revolution S ( ~V ). llquaticm ( 1 ) rcprcscnts  the fields internal

to and on the surface S. These fields will bc modeled using a set of propcrl y chosen finite

clclncnt  basis functions. 1 n l;quation  (1), c, and p, arc the rcla(ivc pcrmittivity  and pcrmcahility

rcspcctivcly,  and LO and qO arc free-space wave numbcl”  and impcdarlcc, I-cspcctivcly.



‘J’he Conlbined-I~ield  lnlegral  Equation Representation

in the formulation of the in(cgra] equation, fictitious electric (~ == ~ X z-) and magnetic

(~ ‘- –i X ~) surface currents, equivalent to the tangcr]tial  magnetic and electric fields just on

the exterior of the boundary surface, arc defined on the boundary. Tlv.x  currents produce the

scatlcrcd  fields in the exterior region. A linear combination of the electric field integral equation

(lil~lli) and the magnetic field integral equation (MFIE) is USCCI in this formulation, and it can bc

succinctly cxprcsscd as

(2)

where % and ‘J arc the intcgro-differential operators used in defining the CFIE, and Vi

rcprcscnts  the incident field.

Enforcing Boundary Conditions

At the artificial surface of revolution separating the interior and exterior regions,

boundary conditions on the continuity of tangential field components lnust bc enforced. Three

equations arc written for the three unknown field quantities of interest, the magnetic field ~/

internal to the volume v and the electric and magnc(ic surface currents, ~ and ~, on the

boundary. Continuity of the magnetic field across the boundary is enforced in a weak sense

NIlx}wi)o (l?xu”)ds=o
CN

where D is a tcsling  function. This is an essential boundary

(3)

condition and must bc cxplici(ly

cnfmwd. Continuity of the electric field across the boundary is made implicit in the finite

clcmcnt cqua[ion in the surface integral term fi x ~:, by replacing this [crm with M, and is tcrlnc(i

a natural  boundary condition.
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NUMERICAL IMPI.EMENTATION

The above three equations arc discretizcd  using appropriate sets of basis functions. In the

interior region, tetrahedral, vector edge elements (Whitney clcmcnts) arc used,

~m,~(r) = Anj(r)VAn(r)-  Afi(r)Vkn,(r) (4)

in which A(r)  arc the tetrahedral shape functions and illdiccs (m,n) refer to the two end points of

cacli edge. These clcmcnts arc used for bo[h expansion and testing (Galcrkin’s  method) in the

finite c]cmcnt domain.

For the integral equation on the surface of revolution, again applying Galcrkin’s method,

a set of basis functions with picccwisc Iincar variation along the surPacc of revolution generator,

and with an azimuthal Fourier modal varialion arc used. l’hus both expansion and testing

functions arc given as

[Hl--—(u i 7’k(r) ~jn$t

U4 = .$ P(17
(5)

in which 7~(t) is a triangle function  spanning the k-th annulus on the surface of revolution

sulfacc.  The variables f and @

distance from the z-axis to a

scgfncn(s  along the generator,

Scgmr.nt. The formulation is

refer to [}]c local surface of revolution coordinates, and p is (11c

point on the surface of revolution. I;ach annulus spans two

each referred to as a strip. A(ljaccnt  triangles overlap on one

similar to the one used in the development of the CICERO

codc[ 10], although other similar formulaticms  arc also possible.

The surface integral in (1) and the first component of the integral in (3) arc termed the

coupling integrals, since with a convenient clloicc of the unknown in the first and of the testing

function in the second, they arc made to couple interior and exterior field rcprcscntations.

To evaluate these terms, the );li basis function W- is c,valuated  app[oximatcly On the

portion of surface of rcvo]ution  Jxojcctcd frotn the triangular facet of the (Clrahcdton  onto a strip

Such projections arc curved triangles, curved quadrilaterals, or curved pentagons. ‘1’llc

evaluation of the integrals was done numerically. ‘Ilcsc coupling integrals, as WCII as the

discrctiz.ation  of the second surface integral in (3), colnp]ctc  the discrctization  of the problcm.
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NIJMERICA1.  SOLUTION 01~ lIIE I.INItAI< SYSTEM

Ilaving introduced the basis and testing functions for the volume as well as the surface

unknowns, substitution into the complctc set of equations

K C o 11 0
c+ o z, M = o
0 z,, ZJ J VI

K=(Kp[7r,  ]7;)

c=- ?@:, .79)

~~ =  ~~(um “ [ix’Tn]).

z~ =(%m[q q

z, =(z,n,[vn, ] ~ q)

ields

(6)

(7)

The symbol I indicates (he adjoint of a matrix. Note that both K and C arc sparse, ZO is tri-

diagonal and Z ~ and ZJ are banded. In particular the system is complex, non-symmetric, and

r~cJ1~-Iicrlllitia[l.

‘1’hc solution to this matrix equation has been dcvclopcd using two alternative strategies

dcpcncling upon the application. ‘llc two approaches arc

1 ) Solve the entire systcm in one step using an iterative algorithm for non-symmetric

systems. In this work the non-symmetric variant of the quasi-minima! residual (QMR)

algol ithm [1 1,12] was applied.

2) Solve the systcm in two steps by first eliminating 11 Ihrough  the computation of

Z~ = C+ K- ‘C and then by solving the I-cduccd  systcm
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(8)

The first step was accomplished by applying a symmetric variant of the QMR iterative

algorithm or a direct solver based on an sparse /. Z~Z! factori?,ation.  The resulting overall

matrix (8) was treated as being dense, and (IIC solution of this second systcm was

accomplished via a direct dense I.LJ dccomposit  ion, sillcc its siz,c is rclativcl y small.

‘t’hc choice of the solution method is dcpcndc[it  upon a variety of factors, including the

number of right-hand side (RI IS) excitation vectors and the efficacy of a prcconditioncr if

iterative algorithms arc used to calculate ~~~ in the second nlcthocl.  ~’hc computational cost of

the first method is mainly duc to solving the systcln iteratively for each RHS. The major

computational cost in the second method is calculating 7.~; this requires the solution of a

systcm of equations, K-lC,  where C is a rcctangulal matrix with a possibly large number of

colLlnms for electrically large scatterers. When considering a radiation problem where there arc

onc or a fcw right-hand sides, or a scattering problcnl with onc or a fcw excitations, the first

mc(hod may bc prcfcrablc. When mono-static RCS calculations arc performed and there arc

upwards of thousands of right-hand sides, the second method is more cfficicnt. This second

approach has been implemented on scalable distributed memory computers, and is reported in

[13].

NUMERICA1. RIL!SUI.TS

Several scatterers have been examined in detail, including dielectric spheres, finite

lcng(h (coated) metal cylinders, recta] concsphcrcs, including onc with a g,roovc near the conc-

sphcrc bounc]ary, and metal cubes. The features of solnc of the meshes arc shown in Table 1. A

surrounding shcl] is used to model a perfectly conducting object coated with a layer of dielectric

ma(crial. As a special case, by choosing the dielectric coatiug  to bc air, the scattering from the

perfectly conducting object itself is obtained. Naturally, no clcmcnts  arc required to model fields
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inside pcrfcc( conductors. The choice of metallic objects was based on the existence of results

from other available codes or measurements.

Table 1. Obiccts  and their t

I Object I Nodes

Dielectric sphere

- - - 1 -

865
—. —.. —

Metal cylinder (coated) 8012.

Mc(al concsphcrc 8882.

Metal concsphcrc with groove 4742
--—-—

Metal cube 15401
.—-—

sh densities

‘=:;7

3963 5217
——— . .—-. .

24246 40476
———.. —

31485 47192
— — — . - — .

15641 24492
——— . . .

73677 94288

When considering the dielectric sphere, only the scattcrcr itself was modeled by the mesh

since there is no need to extend the mesh outside the g,comctry of the scattcrcr.  In the case of the

metal cylinder (height/dianlctcr = 1.92) the mesh was a shell conforming to the object with a

thickness chosen to fit onc tetrahedral clcmcnt edge only, keeping the volume of the region

around the recta] scattcrcr  to a minimum. The problcm of a metal cylinder coated with a

dielectric material is also treated with this choice of mesh.

The metal concsphcrcs were modc]ed  with a quasi-conforms] Jncsh, i.e., it has the same

geometry as the object cvcrywhcrc cxccpt  in a region C1OSC to the tip, where the mesh (un]ikc the

object) does not COJ1lC  to a point. An illustration of one-quarter of the concsphcrc mesh, CLJt

along the longitudinal axis in I:igurc  2. This plot illustrates that two different edge lengths were

chosen to properly model the geometry of the tip of the conical section, as WC1l as the field

variation in the volume around it, while retaining a ]I)uch larger edge length in the mesh volume

around (1IC hemispherical portion. ‘1’hc concsphcrc  had a cone ha] f-ang]c of 20°, a hemispherical

cap diamc[cr of 2.54 cm, and a conical section lcn~;th  of 3.74 c!n. It is sclcctcd  from a set of

measured objects currently available.

The metallic cube was cncloscd  in a cylindrical shell of free space which was designed to

bc big CJIOtJgh to accommodate onc or two tctrahcdra  (radially) in the regions bctwccn the
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corners of (IE cube and (he terminating surface of revolution. 3’]lcIcforc,  with a cube side of 1

cm, the radius of the cylinder was taken to bc 0.8 cm.

RCS and Near-I~icld  Results

A set of RCS calculations, showing comparisons with ci[hcr analytical results or with

calculations obtained with the CICERO code, or nwasurcmcn(s, is provided in l:igs. 3-8. In the

Icgcnd calculations by this method arc rcfcrrcd to as PllOL’BUS, the name of the scattering code

dcvclopcd  in this work. l:igurc  3 refers to the case of a metal cylinder (height = 10 cm, radius =

2.6 cm) coated with a layer of dielectric (8,=3) at a flcqucncy of 3 Gliz;  the thickness of the

layer is 0.2 cm, i.e. ().()35 wavelength in the dielectric. Comparisons arc made with results from

CICERO.

Figure 4 shows the monostatic  RCS of a metal concsphcrc (cone half angle = 20°, sphere

diameter = 2.54 cm) in the E-plane (horizontal polarization). At the frequency of 14 GHz the

height of the scattcrcr is 2.3 wavelengths. Note that the (#1 = 0(’ direction corresponds to the

middle of the hemispherical cap whereas the @ = 180° direction is the tip of the conical section.

Comparisons arc provided with rncasurcd  data as well as with calculations obtained with the

CICIiRO code. Figure 5 illustrates the rnonostatic  RCS of the concsphcre with a groove located

as shown in the inset of the figure. The excitation frequency is 10 GHz. This concsphcrc

geometry cxccpt for the groove is identical to that of Figure 4. The monostatic RCS for this

ot)ject  is compared to that of the CICERO result, and for comparison, the RCS of the sarnc

concsphcrc without groove is shown on the same figure. RCS diffcrcnccs with and without the

groove arc thcrcforc highlighted in this plot. Figure 6 i]lustratcs  the RCS results for a rnctal  cube

(side = 1 cm) at a frequency of 22.5 GIIz compared with existing rncasurcmcnts  [ 14] and

calculations from the PATC1{  integral equation code [ 15]. Tlic incident direction is taken to bc

normal to a face.

Figures 7 and 8 illustrate near-field results computed within the finite clement mesh.

Figu[c 7 is a plot of the total magnetic field rnagnilude  inside a diclc.ctric sphere in the direction
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spccificd by the equation (y=O, z= O), i.e., a line parallel to the x-axis. The sphere radius was 1

cm and the frequency 5 GHz. The small discontinuitim in the curve. arc duc to slight  variations

in the field components normal to an element face when transitioning from one tetrahedron to an

adjacent one. The nominal value of the edge kmgth was l/20(h of the corresponding wavelength

inside the dielectric. Figure 8 is a plot of the tangential phi component of ~ on a metal cylinder

of length 10 cm and radius 2.6 cm. The frequency is ?. GHz, and the excitation field is incident

normal to the bottom end cap of the cylinder. Shown in this figure arc fields on the bottom and

top cnd caps, and along the straight section of the cylilldcr. The local coordinates of each of the

three sections is shown. The set of results on the Icft arc from the 1’1101 il~US code and those on

the right arc from CICERO. The scale indicates the magnitude of the magnetic field for an

incident field magnitude of 1 A/cm. The structure of the nulls in the field and the relatively

strong flclds on the bottom cap compared to the top cap are readily apparent.

CONCI.USIONS

“ “1’his paper presents a method to compute the fields of pcnctrab]c three-dimensional

scatterers of general shape by coupling a fmitc clement solution to an intcgr-al  equation solution

on a surface of revolution. The surface of revolution is chosen to surround the scatterer,

resulting in a minimal amount c)f volume that needs to bc discrctiz.cd.  “1’hc usc of the integral

equation provides an exact enforcement of the Som]ncrfcld radiation condition. Vector edge

elements arc used to discrctizc  the flclds  inside the volume, whereas the integral equation is

discrctiz.cd  on a decoupled surface mesh, introducing a small set of additional basis functions to

the system. A sof(warc package named PHOEBUS was developed, and used to simulate the

scattcrcd  fields for a variety of objects, as well as fields inside pcnctrablc scatterers and on metal

surfaces.
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LIST OF l~IGURES

Figure 1. Geometry of computational domain showing interior and exterior regions.

Figure 2. Finite clcmcnt rncsh of one-quarter of a metal concsphcrc showing variable edge length

with i[icrcasing density near tip of cone. Note that only onc clcmcnt  is nccdcd  over the sphere

scctioll  of the scattcrcr.

I:igurc 3. Bistatic  RCS of coated metal cylinder (radius ‘= 2.6 cm, height == 10 cm, coating

thickness = 0.2 cm) at 3 Cil+z.

IJigurc 4. Monostatic  RCS of a metal concsphcrc (cone half-angle= 20°, diameter of sphere =

2.54 cm, height of conical section = 3.74 cm) at 14 Ghz Inset shows geometry; units in cm.

Figure 5. Monostatic  RCS of the metal concsphcre of Figure 4 with a groove as shown in inset

(units in cm) at 10 GHz. The RCS for the same concsphcrc without groove at this frequency is

also shown for comparison.

I:igurc  6. Bistatic  RCS of metal cube (side= 1 cm) at 22.5 GII~..

I;igurc 7. Magnetic field inside a dielectric sphere (radius = 1 cm, c, := 2.0) along the direction

dc.scribed by (}1c equation z=O, y=O, at 5 G137.

I:igure 8. Surface tangential ~ component of the magnetic field for a metal cylinder (radius =

2.6 cm, length = 10 cm) at 2 GH7.. Shown arc fields on the bottom, straight and top sections of

[hc cylinder. The scale indicates the magnitude of the field for an c.xcitation of 1 (A/cIn). The

1’1101H31JS results arc on the left compared to the CICI{RO results.
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I:igure 1. Geometry of scatterer showing intro ior and exterior regions
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